Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Pathogens ; 12(3)2023 Mar 06.
Article in English | MEDLINE | ID: covidwho-2269204

ABSTRACT

BACKGROUND: Dysregulation of the immune response in the course of COVID-19 has been implicated in critical outcomes. Lymphopenia is evident in severe cases and has been associated with worse outcomes since the early phases of the pandemic. In addition, cytokine storm has been associated with excessive lung injury and concomitant respiratory failure. However, it has also been hypothesized that specific lymphocyte subpopulations (CD4 and CD8 T cells, B cells, and NK cells) may serve as prognostic markers for disease severity. The aim of this study was to investigate possible associations of lymphocyte subpopulations alterations with markers of disease severity and outcomes in patients hospitalized with COVID-19. MATERIALS/METHODS: A total of 42 adult hospitalized patients were included in this study, from June to July 2021. Flow-cytometry was used to calculate specific lymphocyte subpopulations on day 1 (admission) and on day 5 of hospitalization (CD45, CD3, CD3CD8, CD3CD4, CD3CD4CD8, CD19, CD16CD56, CD34RA, CD45RO). Markers of disease severity and outcomes included: burden of disease on CT (% of affected lung parenchyma injury), C-reactive protein and interleukin-6 levels. PO2/FiO2 ratio and differences in lymphocytes subsets between two timepoints were also calculated. Logistic and linear regressions were used for the analyses. All analyses were performed using Stata (version 13.1; Stata Corp, College Station, TX, USA). RESULTS: Higher levels of CD16CD56 cells (Natural Killer cells) were associated with higher risk of lung injury (>50% of lung parenchyma). An increase in CD3CD4 and CD4RO cell count difference between day 5 and day 1 resulted in a decrease of CRP difference between these timepoints. On the other hand, CD45RARO difference was associated with an increase in the difference of CRP levels between the two timepoints. No other significant differences were found in the rest of the lymphocyte subpopulations. CONCLUSIONS: Despite a low patient number, this study showed that alterations in lymphocyte subpopulations are associated with COVID-19 severity markers. It was observed that an increase in lymphocytes (CD4 and transiently CD45RARO) resulted in lower CRP levels, perhaps leading to COVID-19 recovery and immune response homeostasis. However, these findings need further evaluation in larger scale trials.

2.
J Am Acad Dermatol ; 2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2254208
4.
Eur Respir J ; 59(2)2022 02.
Article in English | MEDLINE | ID: covidwho-1282234

ABSTRACT

INTRODUCTION: The individual prognostic factors for coronavirus disease 2019 (COVID-19) are unclear. For this reason, we aimed to present a state-of-the-art systematic review and meta-analysis on the prognostic factors for adverse outcomes in COVID-19 patients. METHODS: We systematically reviewed PubMed from 1 January 2020 to 26 July 2020 to identify non-overlapping studies examining the association of any prognostic factor with any adverse outcome in patients with COVID-19. Random-effects meta-analysis was performed, and between-study heterogeneity was quantified using I2 statistic. Presence of small-study effects was assessed by applying the Egger's regression test. RESULTS: We identified 428 eligible articles, which were used in a total of 263 meta-analyses examining the association of 91 unique prognostic factors with 11 outcomes. Angiotensin-converting enzyme inhibitors, obstructive sleep apnoea, pharyngalgia, history of venous thromboembolism, sex, coronary heart disease, cancer, chronic liver disease, COPD, dementia, any immunosuppressive medication, peripheral arterial disease, rheumatological disease and smoking were associated with at least one outcome and had >1000 events, p<0.005, I2<50%, 95% prediction interval excluding the null value, and absence of small-study effects in the respective meta-analysis. The risk of bias assessment using the Quality in Prognosis Studies tool indicated high risk of bias in 302 out of 428 articles for study participation, 389 articles for adjustment for other prognostic factors and 396 articles for statistical analysis and reporting. CONCLUSIONS: Our findings could be used for prognostic model building and guide patient selection for randomised clinical trials.


Subject(s)
COVID-19 , Bias , Humans , Prognosis , SARS-CoV-2
5.
BMC Public Health ; 21(1): 1125, 2021 06 12.
Article in English | MEDLINE | ID: covidwho-1266482

ABSTRACT

BACKGROUND: To assess the level of knowledge and trust in the policy decisions taken regarding the coronavirus disease (COVID-19) pandemic among Epirus Health Study (EHS) participants. METHODS: The EHS is an ongoing and deeply-phenotyped prospective cohort study that has recruited 667 participants in northwest Greece until August 31st, 2020. Level of knowledge on coronavirus (SARS-CoV-2) transmission and COVID-19 severity was labeled as poor, moderate or good. Variables assessing knowledge and beliefs towards the pandemic were summarized overall and by sex, age group (25-39, 40-49, 50-59, ≥60 years) and period of report (before the lifting of lockdown measures in Greece: March 30th to May 3rd, and two post-lockdown time periods: May 4th to June 31st, July 1st to August 31st). A hypothesis generating exposure-wide association analysis was conducted to evaluate the associations between 153 agnostically-selected explanatory variables and participants' knowledge. Correction for multiple comparisons was applied using a false discovery rate (FDR) threshold of 5%. RESULTS: A total of 563 participants (49 years mean age; 60% women) had available information on the standard EHS questionnaire, the clinical and biochemical measurements, and the COVID-19-related questionnaire. Percentages of poor, moderate and good knowledge status regarding COVID-19 were 4.5, 10.0 and 85.6%, respectively. The majority of participants showed absolute or moderate trust in the Greek health authorities for the management of the epidemic (90.1%), as well as in the Greek Government (84.7%) and the official national sources of information (87.4%). Trust in the authorities was weaker in younger participants and those who joined the study after the lifting of lockdown measures (p-value≤0.001). None of the factors examined was associated with participants' level of knowledge after correction for multiple testing. CONCLUSIONS: High level of knowledge about the COVID-19 pandemic and trust in the Greek authorities was observed, possibly due to the plethora of good quality publicly available information and the timely management of the pandemic at its early stages in Greece. Information campaigns for the COVID-19 pandemic should be encouraged even after the lifting of lockdown measures to increase public awareness.


Subject(s)
COVID-19 , Pandemics , Cohort Studies , Communicable Disease Control , Female , Greece/epidemiology , Humans , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , Surveys and Questionnaires , Trust
6.
Eur J Epidemiol ; 36(3): 299-309, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1081471

ABSTRACT

Most studies of severe/fatal COVID-19 risk have used routine/hospitalisation data without detailed pre-morbid characterisation. Using the community-based UK Biobank cohort, we investigate risk factors for COVID-19 mortality in comparison with non-COVID-19 mortality. We investigated demographic, social (education, income, housing, employment), lifestyle (smoking, drinking, body mass index), biological (lipids, cystatin C, vitamin D), medical (comorbidities, medications) and environmental (air pollution) data from UK Biobank (N = 473,550) in relation to 459 COVID-19 and 2626 non-COVID-19 deaths to 21 September 2020. We used univariate, multivariable and penalised regression models. Age (OR = 2.76 [2.18-3.49] per S.D. [8.1 years], p = 2.6 × 10-17), male sex (OR = 1.47 [1.26-1.73], p = 1.3 × 10-6) and Black versus White ethnicity (OR = 1.21 [1.12-1.29], p = 3.0 × 10-7) were independently associated with and jointly explanatory of (area under receiver operating characteristic curve, AUC = 0.79) increased risk of COVID-19 mortality. In multivariable regression, alongside demographic covariates, being a healthcare worker, current smoker, having cardiovascular disease, hypertension, diabetes, autoimmune disease, and oral steroid use at enrolment were independently associated with COVID-19 mortality. Penalised regression models selected income, cardiovascular disease, hypertension, diabetes, cystatin C, and oral steroid use as jointly contributing to COVID-19 mortality risk; Black ethnicity, hypertension and oral steroid use contributed to COVID-19 but not non-COVID-19 mortality. Age, male sex and Black ethnicity, as well as comorbidities and oral steroid use at enrolment were associated with increased risk of COVID-19 death. Our results suggest that previously reported associations of COVID-19 mortality with body mass index, low vitamin D, air pollutants, renin-angiotensin-aldosterone system inhibitors may be explained by the aforementioned factors.


Subject(s)
COVID-19/epidemiology , Age Factors , Aged , Aged, 80 and over , Biological Specimen Banks , COVID-19/mortality , Comorbidity , Environment , Female , Health Behavior , Humans , Life Style , Lipids/blood , Male , Middle Aged , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Sex Factors , Socioeconomic Factors , United Kingdom/epidemiology
7.
Int J Epidemiol ; 49(5): 1454-1467, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-1066329

ABSTRACT

BACKGROUND: The recent COVID-19 outbreak has generated an unprecedented public health crisis, with millions of infections and hundreds of thousands of deaths worldwide. Using hospital-based or mortality data, several COVID-19 risk factors have been identified, but these may be confounded or biased. METHODS: Using SARS-CoV-2 infection test data (n = 4509 tests; 1325 positive) from Public Health England, linked to the UK Biobank study, we explored the contribution of demographic, social, health risk, medical and environmental factors to COVID-19 risk. We used multivariable and penalized logistic regression models for the risk of (i) being tested, (ii) testing positive/negative in the study population and, adopting a test negative design, (iii) the risk of testing positive within the tested population. RESULTS: In the fully adjusted model, variables independently associated with the risk of being tested for COVID-19 with odds ratio >1.05 were: male sex; Black ethnicity; social disadvantage (as measured by education, housing and income); occupation (healthcare worker, retired, unemployed); ever smoker; severely obese; comorbidities; and greater exposure to particulate matter (PM) 2.5 absorbance. Of these, only male sex, non-White ethnicity and lower educational attainment, and none of the comorbidities or health risk factors, were associated with testing positive among tested individuals. CONCLUSIONS: We adopted a careful and exhaustive approach within a large population-based cohort, which enabled us to triangulate evidence linking male sex, lower educational attainment and non-White ethnicity with the risk of COVID-19. The elucidation of the joint and independent effects of these factors is a high-priority area for further research to inform on the natural history of COVID-19.


Subject(s)
COVID-19 Testing , COVID-19 , Confounding Factors, Epidemiologic , Biological Specimen Banks/standards , Biological Specimen Banks/statistics & numerical data , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing/methods , COVID-19 Testing/statistics & numerical data , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Risk Assessment/methods , Risk Factors , SARS-CoV-2/isolation & purification , United Kingdom/epidemiology
8.
BMJ ; 369: m1328, 2020 04 07.
Article in English | MEDLINE | ID: covidwho-648504

ABSTRACT

OBJECTIVE: To review and appraise the validity and usefulness of published and preprint reports of prediction models for diagnosing coronavirus disease 2019 (covid-19) in patients with suspected infection, for prognosis of patients with covid-19, and for detecting people in the general population at increased risk of covid-19 infection or being admitted to hospital with the disease. DESIGN: Living systematic review and critical appraisal by the COVID-PRECISE (Precise Risk Estimation to optimise covid-19 Care for Infected or Suspected patients in diverse sEttings) group. DATA SOURCES: PubMed and Embase through Ovid, up to 1 July 2020, supplemented with arXiv, medRxiv, and bioRxiv up to 5 May 2020. STUDY SELECTION: Studies that developed or validated a multivariable covid-19 related prediction model. DATA EXTRACTION: At least two authors independently extracted data using the CHARMS (critical appraisal and data extraction for systematic reviews of prediction modelling studies) checklist; risk of bias was assessed using PROBAST (prediction model risk of bias assessment tool). RESULTS: 37 421 titles were screened, and 169 studies describing 232 prediction models were included. The review identified seven models for identifying people at risk in the general population; 118 diagnostic models for detecting covid-19 (75 were based on medical imaging, 10 to diagnose disease severity); and 107 prognostic models for predicting mortality risk, progression to severe disease, intensive care unit admission, ventilation, intubation, or length of hospital stay. The most frequent types of predictors included in the covid-19 prediction models are vital signs, age, comorbidities, and image features. Flu-like symptoms are frequently predictive in diagnostic models, while sex, C reactive protein, and lymphocyte counts are frequent prognostic factors. Reported C index estimates from the strongest form of validation available per model ranged from 0.71 to 0.99 in prediction models for the general population, from 0.65 to more than 0.99 in diagnostic models, and from 0.54 to 0.99 in prognostic models. All models were rated at high or unclear risk of bias, mostly because of non-representative selection of control patients, exclusion of patients who had not experienced the event of interest by the end of the study, high risk of model overfitting, and unclear reporting. Many models did not include a description of the target population (n=27, 12%) or care setting (n=75, 32%), and only 11 (5%) were externally validated by a calibration plot. The Jehi diagnostic model and the 4C mortality score were identified as promising models. CONCLUSION: Prediction models for covid-19 are quickly entering the academic literature to support medical decision making at a time when they are urgently needed. This review indicates that almost all pubished prediction models are poorly reported, and at high risk of bias such that their reported predictive performance is probably optimistic. However, we have identified two (one diagnostic and one prognostic) promising models that should soon be validated in multiple cohorts, preferably through collaborative efforts and data sharing to also allow an investigation of the stability and heterogeneity in their performance across populations and settings. Details on all reviewed models are publicly available at https://www.covprecise.org/. Methodological guidance as provided in this paper should be followed because unreliable predictions could cause more harm than benefit in guiding clinical decisions. Finally, prediction model authors should adhere to the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) reporting guideline. SYSTEMATIC REVIEW REGISTRATION: Protocol https://osf.io/ehc47/, registration https://osf.io/wy245. READERS' NOTE: This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This version is update 3 of the original article published on 7 April 2020 (BMJ 2020;369:m1328). Previous updates can be found as data supplements (https://www.bmj.com/content/369/bmj.m1328/related#datasupp). When citing this paper please consider adding the update number and date of access for clarity.


Subject(s)
Coronavirus Infections/diagnosis , Models, Theoretical , Pneumonia, Viral/diagnosis , COVID-19 , Coronavirus , Disease Progression , Hospitalization/statistics & numerical data , Humans , Multivariate Analysis , Pandemics , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL